A generalized hypergeometric polynomial

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypergeometric Periods for a Tame Polynomial

We analyse the Gauss-Manin system of differential equations— and its Fourier transform—attached to regular functions satisfying a tameness assupmption on a smooth affine variety over C (e.g. tame polynomials on Cn+1). We give a solution to the Birkhoff problem and prove Hodge-type results analogous to those existing for germs of isolated hypersurface singularities.

متن کامل

Generalized basic hypergeometric equations

This paper deals with regular singular generalized q-hypergeometric equations with either “large” or “small” Galois groups. In particular, we consider the fundamental problem of finding appropriate Galoisian substitutes for the usual notion of local monodromy.

متن کامل

An Orthogonal Property of the Hypergeometric Polynomial.

1. Mittag-Leffler's polynomial gn(z) has the orthogonal property fgm(-ix)gn(ix)dx/xsh(x) = m $ n m > 0-co =-2/n m=n n>O. (1.1) This is readily obtained by inverting the integral representation' co gn(ix) = (1/ir) sin (irx)f exu (tanh '/2u)ndu/sh u n > 1 (1.2)-co0 by means of Fourier's inversion formula. The resulting equation co cosech u (tanh 1/2u)n = 1/2 e-iux cosech (irx)gn(ix)dx (1.3)-OD th...

متن کامل

Chebyshev polynomial approximations for some hypergeometric systems

The hypergeometric type differential equations of the second order with polynomial coefficients and their systems are considered. The realization of the Lanczos Tau Method with minimal residue is proposed for the approximate solution of the second order differential equations with polynomial coefficients. The scheme of Tau method is extended for the systems of hypergeometric type differential e...

متن کامل

On Polynomial Eigenfunctions of a Hypergeometric-Type Operator

Consider an operator dQ(f) = d dxk (Q(x)f(x)) where Q(x) is some fixed polynomial of degree k. One can easily see that dQ has exactly one polynomial eigenfunction pn(x) in each degree n ≥ 0 and its eigenvalue λn,k equals (n+k)! n! . A more intriguing fact is that all zeros of pn(x) lie in the convex hull of the set of zeros to Q(x). In particular, if Q(x) has only real zeros then each pn(x) enj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Polonici Mathematici

سال: 1967

ISSN: 0066-2216,1730-6272

DOI: 10.4064/ap-19-2-177-184